Your browser doesn't support javascript.
loading
Adaptable Model Parameters in Non-Invasive Prenatal Testing Lead to More Stable Predictions.
Gazdarica, Juraj; Budis, Jaroslav; Duris, Frantisek; Turna, Jan; Szemes, Tomas.
Afiliación
  • Gazdarica J; Geneton Ltd., Bratislava 841 04, Slovakia. juraj.gazdarica@geneton.sk.
  • Budis J; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava 841 04, Slovakia. juraj.gazdarica@geneton.sk.
  • Duris F; Slovak Centre of Scientific and Technical Information, Bratislava 811 04, Slovakia. juraj.gazdarica@geneton.sk.
  • Turna J; Geneton Ltd., Bratislava 841 04, Slovakia.
  • Szemes T; Slovak Centre of Scientific and Technical Information, Bratislava 811 04, Slovakia.
Int J Mol Sci ; 20(14)2019 Jul 11.
Article en En | MEDLINE | ID: mdl-31336782
Recent advances in massively parallel shotgun sequencing opened up new options for affordable non-invasive prenatal testing (NIPT) for fetus aneuploidy from DNA material extracted from maternal plasma. Tests typically compare chromosomal distributions of a tested sample with a control set of healthy samples with unaffected fetuses. Deviations above certain threshold levels are concluded as positive findings. The main problem with this approach is that the variance of the control set is dependent on the number of sequenced fragments. The higher the amount, the more precise the estimation of actual chromosomal proportions is. Testing a sample with a highly different number of sequenced reads as used in training may thus lead to over- or under-estimation of their variance, and so lead to false predictions. We propose the calculation of a variance for each tested sample adaptively, based on the actual number of its sequenced fragments. We demonstrate how it leads to more stable predictions, mainly in real-world diagnostics with the highly divergent inter-sample coverage.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diagnóstico Prenatal / Modelos Estadísticos / Técnicas de Diagnóstico Molecular Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Pregnancy Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Eslovaquia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diagnóstico Prenatal / Modelos Estadísticos / Técnicas de Diagnóstico Molecular Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Pregnancy Idioma: En Revista: Int J Mol Sci Año: 2019 Tipo del documento: Article País de afiliación: Eslovaquia Pais de publicación: Suiza