Your browser doesn't support javascript.
loading
The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes.
Bhaskaranand, Malavika; Ramachandra, Chaithanya; Bhat, Sandeep; Cuadros, Jorge; Nittala, Muneeswar G; Sadda, Srinivas R; Solanki, Kaushal.
Afiliación
  • Bhaskaranand M; Eyenuk, Inc., Los Angeles, California.
  • Ramachandra C; Eyenuk, Inc., Los Angeles, California.
  • Bhat S; Eyenuk, Inc., Los Angeles, California.
  • Cuadros J; EyePACS LLC, San Jose, California.
  • Nittala MG; Doheny Eye Institute, Los Angeles, California.
  • Sadda SR; Doheny Eye Institute, Los Angeles, California.
  • Solanki K; Eyenuk, Inc., Los Angeles, California.
Diabetes Technol Ther ; 21(11): 635-643, 2019 11.
Article en En | MEDLINE | ID: mdl-31335200
Background: Current manual diabetic retinopathy (DR) screening using eye care experts cannot scale to screen the growing population of diabetes patients who are at risk for vision loss. EyeArt system is an automated, cloud-based artificial intelligence (AI) eye screening technology designed to easily detect referral-warranted DR immediately through automated analysis of patient's retinal images. Methods: This retrospective study assessed the diagnostic efficacy of the EyeArt system v2.0 analyzing 850,908 fundus images from 101,710 consecutive patient visits, collected from 404 primary care clinics. Presence or absence of referral-warranted DR (more than mild nonproliferative DR [NPDR]) was automatically detected by the EyeArt system for each patient encounter, and its performance was compared against a clinical reference standard of quality-assured grading by rigorously trained certified ophthalmologists and optometrists. Results: Of the 101,710 visits, 75.7% were nonreferable, 19.3% were referable to an eye care specialist, and in 5.0%, the DR level was unknown as per the clinical reference standard. EyeArt screening had 91.3% (95% confidence interval [CI]: 90.9-91.7) sensitivity and 91.1% (95% CI: 90.9-91.3) specificity. For 5446 encounters with potentially treatable DR (more than moderate NPDR and/or diabetic macular edema), the system provided a positive "refer" output to 5363 encounters achieving sensitivity of 98.5%. Conclusions: This study captures variations in real-world clinical practice and shows that an AI DR screening system can be safe and effective in the real world. This study demonstrates the value of this easy-to-use, automated tool for endocrinologists, diabetologists, and general practitioners to address the growing need for DR screening and monitoring.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oftalmología / Interpretación de Imagen Asistida por Computador / Edema Macular / Tamizaje Masivo / Retinopatía Diabética Tipo de estudio: Diagnostic_studies / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans / Middle aged Idioma: En Revista: Diabetes Technol Ther Asunto de la revista: ENDOCRINOLOGIA / TERAPEUTICA Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oftalmología / Interpretación de Imagen Asistida por Computador / Edema Macular / Tamizaje Masivo / Retinopatía Diabética Tipo de estudio: Diagnostic_studies / Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans / Middle aged Idioma: En Revista: Diabetes Technol Ther Asunto de la revista: ENDOCRINOLOGIA / TERAPEUTICA Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos