Your browser doesn't support javascript.
loading
Computational models of auditory perception from feature extraction to stream segregation and behavior.
Rankin, James; Rinzel, John.
Afiliación
  • Rankin J; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Rd, Exeter EX4 4QF, UK. Electronic address: james.rankin@gmail.com.
  • Rinzel J; Center for Neural Science, New York University, 4 Washington Place, 10003 New York, NY, United States; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, 10012 New York, NY, United States.
Curr Opin Neurobiol ; 58: 46-53, 2019 10.
Article en En | MEDLINE | ID: mdl-31326723
Audition is by nature dynamic, from brainstem processing on sub-millisecond time scales, to segregating and tracking sound sources with changing features, to the pleasure of listening to music and the satisfaction of getting the beat. We review recent advances from computational models of sound localization, of auditory stream segregation and of beat perception/generation. A wealth of behavioral, electrophysiological and imaging studies shed light on these processes, typically with synthesized sounds having regular temporal structure. Computational models integrate knowledge from different experimental fields and at different levels of description. We advocate a neuromechanistic modeling approach that incorporates knowledge of the auditory system from various fields, that utilizes plausible neural mechanisms, and that bridges our understanding across disciplines.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Corteza Auditiva / Localización de Sonidos Idioma: En Revista: Curr Opin Neurobiol Asunto de la revista: BIOLOGIA / NEUROLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Corteza Auditiva / Localización de Sonidos Idioma: En Revista: Curr Opin Neurobiol Asunto de la revista: BIOLOGIA / NEUROLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido