Your browser doesn't support javascript.
loading
A robust multi-variability model based liver segmentation algorithm for CT-scan and MRI modalities.
Lebre, Marie-Ange; Vacavant, Antoine; Grand-Brochier, Manuel; Rositi, Hugo; Strand, Robin; Rosier, Hubert; Abergel, Armand; Chabrot, Pascal; Magnin, Benoît.
Afiliación
  • Lebre MA; Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France. Electronic address: m-ange.lebre@uca.fr.
  • Vacavant A; Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
  • Grand-Brochier M; Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
  • Rositi H; Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
  • Strand R; Centre for Image Analysis, Uppsala University, Sweden.
  • Rosier H; Centre Hospitalier Émile Roux, Le Puy-en-Velay, France.
  • Abergel A; Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
  • Chabrot P; Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
  • Magnin B; Université Clermont Auvergne, CHU Clermont-Ferrand, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
Comput Med Imaging Graph ; 76: 101635, 2019 09.
Article en En | MEDLINE | ID: mdl-31301489
Developing methods to segment the liver in medical images, study and analyze it remains a significant challenge. The shape of the liver can vary considerably from one patient to another, and adjacent organs are visualized in medical images with similar intensities, making the boundaries of the liver ambiguous. Consequently, automatic or semi-automatic segmentation of liver is a difficult task. Moreover, scanning systems and magnetic resonance imaging have different settings and parameters. Thus the images obtained differ from one machine to another. In this article, we propose an automatic model-based segmentation that allows building a faithful 3-D representation of the liver, with a mean Dice value equal to 90.3% on CT and MRI datasets. We compare our algorithm with a semi-automatic method and with other approaches according to the state of the art. Our method works with different data sources, we use a large quantity of CT and MRI images from machines in various hospitals and multiple DICOM images available from public challenges. Finally, for evaluation of liver segmentation approaches in state of the art, robustness is not adequacy addressed with a precise definition. Another originality of this article is the introduction of a novel measure of robustness, which takes into account the liver variability at different scales.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética / Tomografía Computarizada por Rayos X / Hígado / Hepatopatías Tipo de estudio: Prognostic_studies Límite: Female / Humans / Male Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética / Tomografía Computarizada por Rayos X / Hígado / Hepatopatías Tipo de estudio: Prognostic_studies Límite: Female / Humans / Male Idioma: En Revista: Comput Med Imaging Graph Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos