Your browser doesn't support javascript.
loading
A universal aptasensing platform based on cryonase-assisted signal amplification and graphene oxide induced quenching of the fluorescence of labeled nucleic acid probes: application to the detection of theophylline and ATP.
Lou, Yi-Fei; Peng, Yong-Bo; Luo, Xiaowei; Yang, Zhiming; Wang, Ruifeng; Sun, Dewen; Li, Lingxiangyu; Tan, Yuyu; Huang, Jiahao; Cui, Liang.
Afiliación
  • Lou YF; Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China.
  • Peng YB; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
  • Luo X; Molecular Science and Biomedicine Laboratory (MBL), College of Life Sciences, Hunan University, Changsha, 410082, China.
  • Yang Z; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Estates Building, 10 Sassoon Road, Hong Kong, 00852, People's Republic of China.
  • Wang R; Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.
  • Sun D; Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China.
  • Li L; Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China.
  • Tan Y; Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China.
  • Huang J; Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310008, China.
  • Cui L; Department of Biomedical Engineering School of Electrical Engineering, University of South China, Hengyang, 421002, China.
Mikrochim Acta ; 186(8): 494, 2019 07 02.
Article en En | MEDLINE | ID: mdl-31267250
This study describes a universal fluorometric method for sensitive detection of analytes by using aptamers. It is based on the use of graphene oxide (GO) and cryonase-assisted signal amplification. GO is a strong quencher of FAM-labeled nucleic acid probes, while cryonase digests all types of nucleic acid probes. This makes the platform widely applicable to analytes for which the corresponding aptamers are available. Theophylline and ATP were chosen as model analytes. In the absence of targets, dye-labeled aptamers are in a flexible single strand state and adsorb on the GO. As a result, the probes are non-fluorescent due to the efficient quenching of dyes by GO. Upon the addition of a specific target, the aptamer/target complex desorbed from the GO surface and the probe becomes fluorescent. The released complex will immediately become a substrate for cryonase digestion and subsequently releasing the target to bind to another aptamer to initiate the next round of cleavage. This cyclic reaction will repeat again and again until all the related-probes are consumed and all fluorophores light up, resulting in significant fluorescent signal amplification. The detection limits are 47 nM for theophylline and 22.5 nM for ATP. This is much better than that of known methods. The assay requires only mix-and-measure steps that can be accomplished rapidly. In our perception, the detection scheme holds great promise for the design enzyme-aided amplification mechanisms for use in bioanalytical methods. Graphical abstract A cryonase-assisted signal amplification (CASA) method has been developed by using graphene oxide (GO) conjugated with a fluorophore-labeled aptamer for fluorescence signal generation. It has a large scope because it may be applied to numerous analytes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teofilina / Técnicas Biosensibles / Sondas de Ácido Nucleico / Adenosina Trifosfato / Aptámeros de Nucleótidos / Grafito Tipo de estudio: Diagnostic_studies Idioma: En Revista: Mikrochim Acta Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Austria

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Teofilina / Técnicas Biosensibles / Sondas de Ácido Nucleico / Adenosina Trifosfato / Aptámeros de Nucleótidos / Grafito Tipo de estudio: Diagnostic_studies Idioma: En Revista: Mikrochim Acta Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Austria