Your browser doesn't support javascript.
loading
Vapor/liquid polymerization of ultraporous transparent and capacitive polypyrrole nanonets.
Santino, Luciano M; Diao, Yifan; Yang, Haoru; Lu, Yang; Wang, Hongmin; Hwang, Erica; D'Arcy, Julio M.
Afiliación
  • Santino LM; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Diao Y; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA. jdarcy@wustl.edu.
  • Yang H; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Lu Y; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA. jdarcy@wustl.edu.
  • Wang H; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • Hwang E; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
  • D'Arcy JM; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA. jdarcy@wustl.edu.
Nanoscale ; 11(25): 12358-12369, 2019 Jul 07.
Article en En | MEDLINE | ID: mdl-31215944
Freestanding, contiguous, and translucent polypyrrole nanonets are prepared within 90 minutes at room temperature in Petri dishes by exposing aqueous oxidant to static pyrrole vapor. The nanonets are 150 nm thick, with variable densities depending on polymerization time. The nanonets maintain a low sheet resistance of 29.1 Ω□-1 at 30% optical transmission, and 423 Ω□-1 at 50% transmission. A mechanism is proposed in which polypyrrole islands serve as nucleation sites for further surface-tension constrained polymerization. The nanonets exhibit a high degree of electrochemical dopability (over 24%). Nets are robust and processable, as evidenced by their ability to drape over 2D and 3D substrates. Large areas of films are manually twisted into highly porous sub-millimeter diameter conductive wires, able to recover their two-dimensional structure upon immersion in solvents. Moreover, nanonets exhibit a high specific capacitance of 518 F g-1 for a 1.2 V potential window. Electrochemical capacitors fabricated with nanonet active electrodes show a high energy density of 9.86 W h kg-1 at 1775 W kg-1 when charged to 0.8 V.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido