Your browser doesn't support javascript.
loading
Controlling the Infrared Dielectric Function through Atomic-Scale Heterostructures.
Ratchford, Daniel C; Winta, Christopher J; Chatzakis, Ioannis; Ellis, Chase T; Passler, Nikolai C; Winterstein, Jonathan; Dev, Pratibha; Razdolski, Ilya; Matson, Joseph R; Nolen, Joshua R; Tischler, Joseph G; Vurgaftman, Igor; Katz, Michael B; Nepal, Neeraj; Hardy, Matthew T; Hachtel, Jordan A; Idrobo, Juan-Carlos; Reinecke, Thomas L; Giles, Alexander J; Katzer, D Scott; Bassim, Nabil D; Stroud, Rhonda M; Wolf, Martin; Paarmann, Alexander; Caldwell, Joshua D.
Afiliación
  • Ratchford DC; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Winta CJ; Physikalische Chemie , Fritz-Haber-Institut der MPG , Faradayweg 4-6 , 14195 Berlin , Germany.
  • Chatzakis I; ASEE Postdoctoral Associate , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Ellis CT; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Passler NC; Physikalische Chemie , Fritz-Haber-Institut der MPG , Faradayweg 4-6 , 14195 Berlin , Germany.
  • Winterstein J; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Dev P; Department of Physics and Astronomy , Howard University , Washington , D.C. 20059 , United States.
  • Razdolski I; Physikalische Chemie , Fritz-Haber-Institut der MPG , Faradayweg 4-6 , 14195 Berlin , Germany.
  • Matson JR; FELIX Laboratory, Faculty of Science , Radboud University , 6500 GL Nijmegen , The Netherlands.
  • Nolen JR; Department of Mechanical Engineering , Vanderbilt University , 2400 Highland Avenue , Nashville , Tennessee 37212 , United States.
  • Tischler JG; Department of Mechanical Engineering , Vanderbilt University , 2400 Highland Avenue , Nashville , Tennessee 37212 , United States.
  • Vurgaftman I; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Katz MB; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Nepal N; NRC Postdoctoral Associate , U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Hardy MT; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Hachtel JA; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Idrobo JC; Center for Nanophase Materials Science , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
  • Reinecke TL; Center for Nanophase Materials Science , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.
  • Giles AJ; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Katzer DS; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Bassim ND; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Stroud RM; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Wolf M; Department of Materials Science and Engineering , McMaster University , Hamilton , Ontario JHE 357 , Canada.
  • Paarmann A; U.S. Naval Research Laboratory , Washington , D.C. 20375 , United States.
  • Caldwell JD; Physikalische Chemie , Fritz-Haber-Institut der MPG , Faradayweg 4-6 , 14195 Berlin , Germany.
ACS Nano ; 13(6): 6730-6741, 2019 Jun 25.
Article en En | MEDLINE | ID: mdl-31184132
Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos