Your browser doesn't support javascript.
loading
ERISNet: deep neural network for Sargassum detection along the coastline of the Mexican Caribbean.
Arellano-Verdejo, Javier; Lazcano-Hernandez, Hugo E; Cabanillas-Terán, Nancy.
Afiliación
  • Arellano-Verdejo J; Estacion para la Recepcion de Informacion Satelital ERIS-Chetumal, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, México.
  • Lazcano-Hernandez HE; Catedras CONACYT-El Colegio de la Frontera Sur, Chetumal, Quintana Roo, México.
  • Cabanillas-Terán N; Catedras CONACYT-El Colegio de la Frontera Sur, Chetumal, Quintana Roo, México.
PeerJ ; 7: e6842, 2019.
Article en En | MEDLINE | ID: mdl-31106059
Recently, Caribbean coasts have experienced atypical massive arrivals of pelagic Sargassum with negative consequences both ecologically and economically. Based on deep learning techniques, this study proposes a novel algorithm for floating and accumulated pelagic Sargassum detection along the coastline of Quintana Roo, Mexico. Using convolutional and recurrent neural networks architectures, a deep neural network (named ERISNet) was designed specifically to detect these macroalgae along the coastline through remote sensing support. A new dataset which includes pixel values with and without Sargassum was built to train and test ERISNet. Aqua-MODIS imagery was used to build the dataset. After the learning process, the designed algorithm achieves a 90% of probability in its classification skills. ERISNet provides a novel insight to detect accurately algal blooms arrivals.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies País/Región como asunto: Mexico Idioma: En Revista: PeerJ Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Diagnostic_studies País/Región como asunto: Mexico Idioma: En Revista: PeerJ Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos