Personalized Pancreatic Cancer Management: A Systematic Review of How Machine Learning Is Supporting Decision-making.
Pancreas
; 48(5): 598-604, 2019.
Article
en En
| MEDLINE
| ID: mdl-31090660
This review critically analyzes how machine learning is being used to support clinical decision-making in the management of potentially resectable pancreatic cancer. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines, electronic searches of MEDLINE, Embase, PubMed, and Cochrane Database were undertaken. Studies were assessed using the checklist for critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS) checklist. In total 89,959 citations were retrieved. Six studies met the inclusion criteria. Three studies were Markov decision-analysis models comparing neoadjuvant therapy versus upfront surgery. Three studies predicted survival time using Bayesian modeling (n = 1) and artificial neural network (n = 1), and one study explored machine learning algorithms including Bayesian network, decision trees, k-nearest neighbor, and artificial neural networks. The main methodological issues identified were limited data sources, which limits generalizability and potentiates bias; lack of external validation; and the need for transparency in methods of internal validation, consecutive sampling, and selection of candidate predictors. The future direction of research relies on expanding our view of the multidisciplinary team to include professionals from computing and data science with algorithms developed in conjunction with clinicians and viewed as aids, not replacement, to traditional clinical decision-making.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Neoplasias Pancreáticas
/
Toma de Decisiones
/
Medicina de Precisión
/
Aprendizaje Automático
Tipo de estudio:
Diagnostic_studies
/
Guideline
/
Health_economic_evaluation
/
Prognostic_studies
/
Systematic_reviews
Límite:
Humans
Idioma:
En
Revista:
Pancreas
Asunto de la revista:
GASTROENTEROLOGIA
Año:
2019
Tipo del documento:
Article
Pais de publicación:
Estados Unidos