Your browser doesn't support javascript.
loading
Putting machine learning into motion: applications in cardiovascular imaging.
O'Regan, D P.
Afiliación
  • O'Regan DP; MRC London Institute of Medical Sciences, Imperial College London, London, UK. Electronic address: declan.oregan@imperial.ac.uk.
Clin Radiol ; 75(1): 33-37, 2020 01.
Article en En | MEDLINE | ID: mdl-31079952
Heart and circulatory diseases cause a quarter of all deaths in the UK and cardiac imaging offers an effective tool for early diagnosis and risk-stratification to improve premature death and disability. This domain of radiology is unique in that assessing flow and motion is essential for understanding and quantifying normal physiology and disease processes. Conventional image interpretation relies on manual analysis but this often fails to capture important prognostic features in the complex disturbances of cardiovascular physiology. Machine learning (ML) in cardiovascular imaging promises to be a transformative tool and addresses an unmet need for patient-specific management, accurate prediction of future events, and the discovery of tractable molecular mechanisms of disease. This review discusses the potential of ML across every aspect of image analysis including efficient acquisition, segmentation and motion tracking, disease classification, prediction tasks and modelling of genotype-phenotype interactions; however, significant challenges remain in access to high-quality data at scale, robust validation, and clinical interpretability.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Enfermedades Cardiovasculares / Imagen por Resonancia Cinemagnética / Aprendizaje Automático Tipo de estudio: Guideline / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Clin Radiol Año: 2020 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Interpretación de Imagen Asistida por Computador / Enfermedades Cardiovasculares / Imagen por Resonancia Cinemagnética / Aprendizaje Automático Tipo de estudio: Guideline / Prognostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Clin Radiol Año: 2020 Tipo del documento: Article Pais de publicación: Reino Unido