Your browser doesn't support javascript.
loading
Cascaded collimator for atomic beams traveling in planar silicon devices.
Li, Chao; Chai, Xiao; Wei, Bochao; Yang, Jeremy; Daruwalla, Anosh; Ayazi, Farrokh; Raman, C.
Afiliación
  • Li C; School of Physics, Georgia Institute of Technology, 837 State St, Atlanta, GA, 30332, USA.
  • Chai X; School of Physics, Georgia Institute of Technology, 837 State St, Atlanta, GA, 30332, USA.
  • Wei B; School of Physics, Georgia Institute of Technology, 837 State St, Atlanta, GA, 30332, USA.
  • Yang J; School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA.
  • Daruwalla A; School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA.
  • Ayazi F; School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA.
  • Raman C; School of Physics, Georgia Institute of Technology, 837 State St, Atlanta, GA, 30332, USA. chandra.raman@physics.gatech.edu.
Nat Commun ; 10(1): 1831, 2019 04 23.
Article en En | MEDLINE | ID: mdl-31015477
Micro- and increasingly, nano-fabrication have enabled the miniaturization of atomic devices, from vapor cells to atom chips for Bose-Einstein condensation. Here we present microfabricated planar devices for thermal atomic beams. Etched microchannels were used to create highly collimated, continuous rubidium atom beams traveling parallel to a silicon wafer surface. Precise, lithographic definition of the guiding channels allowed for shaping and tailoring the velocity distributions in ways not possible using conventional machining. Multiple miniature beams with individually prescribed geometries were created, including collimated, focusing and diverging outputs. A "cascaded" collimator was realized with 40 times greater purity than conventional collimators. These localized, miniature atom beam sources can be a valuable resource for a number of quantum technologies, including atom interferometers, clocks, Rydberg atoms, and hybrid atom-nanophotonic systems, as well as enabling controlled studies of atom-surface interactions at the nanometer scale.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido