The fate of bromine after temperature-induced dehydrogenation of on-surface synthesized bisheptahelicene.
Chem Sci
; 10(10): 2998-3004, 2019 Mar 14.
Article
en En
| MEDLINE
| ID: mdl-30996879
The on-surface synthesis of bisheptahelicene by Ullmann coupling of 9-bromoheptahelicene on Au(111) and its temperature-induced dehydrogenation is studied using temperature-programmed reaction spectroscopy and time-of-flight secondary ion mass spectrometry. Specific dehydrogenation products of bisheptahelicene after loss of 6, 8 and 10 hydrogen atoms are identified, corresponding to molecules having undergone Diels-Alder transformations and intramolecular C-C coupling reactions. By combining with atomic hydrogen produced by dehydrogenation, the Ullmann coupling side-product bromine desorbs as HBr. H2 desorption emerges only after all Br has desorbed. Such characteristic behavior is explained by a kinetic model which explicitly considers the coverage of transient atomic H on the surface. Heating experiments performed with saturated layers of different Br-containing molecules reveal that the onset of HBr desorption depends strictly on the dehydrogenation step and therefore on the structure of the molecules.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Chem Sci
Año:
2019
Tipo del documento:
Article
Pais de publicación:
Reino Unido