Your browser doesn't support javascript.
loading
Cavity Cooling of a Levitated Nanosphere by Coherent Scattering.
Delic, Uros; Reisenbauer, Manuel; Grass, David; Kiesel, Nikolai; Vuletic, Vladan; Aspelmeyer, Markus.
Afiliación
  • Delic U; Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
  • Reisenbauer M; Institute for Quantum Optics and Quantum Information (IQOQI), Boltzmanngasse 3, A-1090 Vienna, Austria.
  • Grass D; Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
  • Kiesel N; Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
  • Vuletic V; Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.
  • Aspelmeyer M; Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Phys Rev Lett ; 122(12): 123602, 2019 Mar 29.
Article en En | MEDLINE | ID: mdl-30978033
We report three-dimensional (3D) cooling of a levitated nanoparticle inside an optical cavity. The cooling mechanism is provided by cavity-enhanced coherent scattering off an optical tweezer. The observed 3D dynamics and cooling rates are as theoretically expected from the presence of both linear and quadratic terms in the interaction between the particle motion and the cavity field. By achieving nanometer-level control over the particle location we optimize the position-dependent coupling and demonstrate axial cooling by two orders of magnitude at background pressures of 6×10^{-2} mbar. We also estimate a significant (>40 dB) suppression of laser phase noise heating, which is a specific feature of the coherent scattering scheme. The observed performance implies that quantum ground state cavity cooling of levitated nanoparticles can be achieved for background pressures below 1×10^{-7} mbar.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Estados Unidos