Your browser doesn't support javascript.
loading
Variance Components Models for Analysis of Big Family Data of Health Outcomes in the Lifelines Cohort Study.
Demetrashvili, Nino; Smidt, Nynke; Snieder, Harold; van den Heuvel, Edwin R; Wit, Ernst C.
Afiliación
  • Demetrashvili N; Department of Epidemiology,University of Groningen, University Medical Center Groningen,Groningen,The Netherlands.
  • Smidt N; Department of Epidemiology,University of Groningen, University Medical Center Groningen,Groningen,The Netherlands.
  • Snieder H; Department of Epidemiology,University of Groningen, University Medical Center Groningen,Groningen,The Netherlands.
  • van den Heuvel ER; Department of Epidemiology,University of Groningen, University Medical Center Groningen,Groningen,The Netherlands.
  • Wit EC; Bernoulli Institute,University of Groningen,Groningen,The Netherlands.
Twin Res Hum Genet ; 22(1): 4-13, 2019 02.
Article en En | MEDLINE | ID: mdl-30944055
Large multigenerational cohort studies offer powerful ways to study the hereditary effects on various health outcomes. However, accounting for complex kinship relations in big data structures can be methodologically challenging. The traditional kinship model is computationally infeasible when considering thousands of individuals. In this article, we propose a computationally efficient alternative that employs fractional relatedness of family members through a series of founding members. The primary goal of this study is to investigate whether the effect of determinants on health outcome variables differs with and without accounting for family structure. We compare a fixed-effects model without familial effects with several variance components models that account for heritability and shared environment structure. Our secondary goal is to apply the fractional relatedness model in a realistic setting. Lifelines is a three-generation cohort study investigating the biological, behavioral, and environmental determinants of healthy aging. We analyzed a sample of 89,353 participants from 32,452 reconstructed families. Our primary conclusion is that the effect of determinants on health outcome variables does not differ with and without accounting for family structure. However, accounting for family structure through fractional relatedness allows for estimating heritability in a computationally efficient way, showing some interesting differences between physical and mental quality of life heritability. We have shown through simulations that the proposed fractional relatedness model performs better than the standard kinship model, not only in terms of computational time and convenience of fitting using standard functions in R, but also in terms of bias of heritability estimates and coverage.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Envejecimiento / Familia / Bases de Datos Genéticas / Interacción Gen-Ambiente / Macrodatos / Modelos Genéticos Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies Aspecto: Patient_preference Límite: Female / Humans / Male Idioma: En Revista: Twin Res Hum Genet Asunto de la revista: GENETICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Envejecimiento / Familia / Bases de Datos Genéticas / Interacción Gen-Ambiente / Macrodatos / Modelos Genéticos Tipo de estudio: Etiology_studies / Observational_studies / Prognostic_studies Aspecto: Patient_preference Límite: Female / Humans / Male Idioma: En Revista: Twin Res Hum Genet Asunto de la revista: GENETICA MEDICA Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Reino Unido