Your browser doesn't support javascript.
loading
Degradation of antibiotics in multi-component systems with novel ternary AgBr/Ag3PO4@natural hematite heterojunction photocatalyst under simulated solar light.
Chen, Liwei; Yang, Shengjiong; Huang, Yang; Zhang, Baogang; Kang, Fuxing; Ding, Dahu; Cai, Tianming.
Afiliación
  • Chen L; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Yang S; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
  • Huang Y; College of Materials Science and Engineering, Shenzhen university, Shenzhen 518060, China.
  • Zhang B; School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
  • Kang F; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
  • Ding D; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address: ddh@njau.edu.cn.
  • Cai T; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
J Hazard Mater ; 371: 566-575, 2019 06 05.
Article en En | MEDLINE | ID: mdl-30878907
Abatement of antibiotics from aquatic systems is of great importance but remains a challenge. Herein, we prepared ternary AgBr/Ag3PO4@natural hematite (AgBr/Ag3PO4@NH) heterojunction composite via a simple route for the photocatalytic degradation of antibiotic pollutants. By adjusting the dose of Ag species, four products with different Ag content (denoted as Ag0.5BrPFe, Ag1BrPFe, Ag1.5BrPFe, and Ag2BrPFe) were developed. Among them, Ag1.5BrPFe exhibited the best photocatalytic activity. Four antibiotics (i.e. ciprofloxacin (CIP), norfloxacin (NOR), sulfadiazine (SDZ), and tetracycline (TTC)) could be degraded with synthesized Ag1.5BrPFe in multi-component systems. Water matrix indexes including solution pH, coexisting anions, humic acids exhibited distinct effects on the degradation process. The results revealed that the degradation process was accelerated at acidic conditions while depressed at basic conditions. Superoxide radical and hole were detected by in situ electron spin resonance technique and played the dominant roles. The degradation pathway TTC was tentatively established followed with the identification of the degradation intermediates and computational analysis. This work would shed light on the photocatalytic degradation mechanism of organic pollutants by the AgBr/Ag3PO4@NH composite.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfatos / Luz Solar / Bromuros / Compuestos Férricos / Compuestos de Plata / Antibacterianos Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fosfatos / Luz Solar / Bromuros / Compuestos Férricos / Compuestos de Plata / Antibacterianos Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos