Your browser doesn't support javascript.
loading
Light-Controlled Nanoscopic Writing of Electronic Memories Using the Tip-Enhanced Bulk Photovoltaic Effect.
Luo, Zheng-Dong; Park, Dae-Sung; Yang, Ming-Min; Alexe, Marin.
Afiliación
  • Luo ZD; Department of Physics , University of Warwick , Coventry CV4 7AL , U.K.
  • Park DS; Centre for Innovation Competence SiLi-nano , Martin-Luther-University Halle-Wittenberg , Halle (Saale) 06120 , Germany.
  • Yang MM; Department of Physics , University of Warwick , Coventry CV4 7AL , U.K.
  • Alexe M; Department of Physics , University of Warwick , Coventry CV4 7AL , U.K.
ACS Appl Mater Interfaces ; 11(8): 8276-8283, 2019 Feb 27.
Article en En | MEDLINE | ID: mdl-30719908
The light control of nonvolatile nanoscale memories could represent a fundamental step toward novel optoelectronic devices with memory and logic functionalities. However, most of the proposed devices exhibit insufficient control in terms of the reversibility, data retention, photosensitivity, limited-photoactive area, and so forth. Here, in a proof-of-concept work, we demonstrate the use of the tip-enhanced bulk photovoltaic (BPV) effect to realize programmable nanoscopic writing of nonphotoactive electronic devices by light control. We show that electronic properties of solid-state memory devices can be reversibly and location-precisely manipulated in the nanoscale using the BPV effect in combination with the nanoscale contact connection, that is, atomic force microscopy (AFM) probe technique in this work. More than 105% reversible switching of tunneling electroresistance of ferroelectric tunnel junctions is exclusively achieved by light control. Using the same light-controlled AFM probe technique, we also present precise nanoscopic and multiple-state writing of LaAlO3/SrTiO3 two-dimensional electron gas (2DEG)-based field-effect transistors. The tip-enhanced BPV effect can offer a novel avenue for reversible and multistate light control of a wide range of electronic memory devices in the nanoscale and may lead to more sophisticated functionalities in optoelectronic applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos