Your browser doesn't support javascript.
loading
A three-dimensional principal component analysis approach for exploratory analysis of hyperspectral data: identification of ovarian cancer samples based on Raman microspectroscopy imaging of blood plasma.
Morais, Camilo L M; Martin-Hirsch, Pierre L; Martin, Francis L.
Afiliación
  • Morais CLM; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK. cdlmedeiros-de-morai@uclan.ac.uk flmartin@uclan.ac.uk.
Analyst ; 144(7): 2312-2319, 2019 Mar 25.
Article en En | MEDLINE | ID: mdl-30714597
Hyperspectral imaging is a powerful tool to obtain both chemical and spatial information of biological systems. However, few algorithms are capable of working with full three-dimensional images, in which reshaping or averaging procedures are often performed to reduce the data complexity. Herein, we propose a new algorithm of three-dimensional principal component analysis (3D-PCA) for exploratory analysis of complete 3D spectrochemical images obtained through Raman microspectroscopy. Blood plasma samples of ten patients (5 healthy controls, 5 diagnosed with ovarian cancer) were analysed by acquiring hyperspectral imaging in the fingerprint region (∼780-1858 cm-1). Results show that 3D-PCA can clearly differentiate both groups based on its scores plot, where higher loadings coefficients were observed in amino acids, lipids and DNA regions. 3D-PCA is a new methodology for exploratory analysis of hyperspectral imaging, providing fast information for class differentiation.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Ováricas / Imagenología Tridimensional / Análisis de Componente Principal Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies Límite: Female / Humans Idioma: En Revista: Analyst Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Ováricas / Imagenología Tridimensional / Análisis de Componente Principal Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies Límite: Female / Humans Idioma: En Revista: Analyst Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido