Your browser doesn't support javascript.
loading
Experimental and numerical investigations on the effect of fracture geometry and fracture aperture distribution on flow and solute transport in natural fractures.
Stoll, M; Huber, F M; Trumm, M; Enzmann, F; Meinel, D; Wenka, A; Schill, E; Schäfer, T.
Afiliación
  • Stoll M; Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany; Friedrich-Schiller-University Jena (FSU), Institute of Geosciences, Applied Geology, Burgweg 11, 07749 Jena, Germany. Electronic address: madeleine.stoll@kit.edu.
  • Huber FM; Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany.
  • Trumm M; Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany.
  • Enzmann F; Johannes Gutenberg-University, Geosciences Institute, J.-J. Becherweg 21, 55099 Mainz, Germany.
  • Meinel D; Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
  • Wenka A; Karlsruhe Institute of Technology (KIT), Institute for Micro Process Engineering (IMVT), 76021 Karlsruhe, Germany.
  • Schill E; Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany; Technical University of Darmstadt, Institute of Applied Geoscience, Schnittspahnstraße 9, 64287 Darmstadt, Germany.
  • Schäfer T; Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany; Friedrich-Schiller-University Jena (FSU), Institute of Geosciences, Applied Geology, Burgweg 11, 07749 Jena, Germany.
J Contam Hydrol ; 221: 82-97, 2019 Feb.
Article en En | MEDLINE | ID: mdl-30712982
The impact of fracture geometry and aperture distribution on fluid movement and on non-reactive solute transport was investigated experimentally and numerically in single fractures. For this purpose a hydrothermally altered and an unaltered granite drill core with axial fractures were investigated. Using three injection and three extraction locations at top and bottom of the fractured cores, different dipole flow fields were examined. The conservative tracer (Amino-G) breakthrough curves were measured using fluorescence spectroscopy. Based on 3-D digital data obtained by micro-computed tomography 2.5-D numerical models were generated for both fractures by mapping the measured aperture distributions to the 2-D fracture geometries (x-y plane). Fluid flow and tracer transport were simulated using COMSOL Multiphysics®. By means of numerical simulations and tomographic imaging experimentally observed breakthrough curves can be understood and qualitatively reproduced. The experiments and simulations suggest that fluid flow in the altered fracture is governed by the 2-D fracture geometry in the x-y plane, while fluid flow in the unaltered fracture seems to be controlled by the aperture distribution. Moreover, we demonstrate that in our case simplified parallel-plate models fail to describe the experimental findings and that pronounced tailings can be attributed to complex internal heterogeneities. The results presented, implicate the necessity to incorporate complex domain geometries governing fluid flow and mass transport into transport modeling.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Movimientos del Agua / Modelos Teóricos Tipo de estudio: Prognostic_studies Idioma: En Revista: J Contam Hydrol Asunto de la revista: TOXICOLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Movimientos del Agua / Modelos Teóricos Tipo de estudio: Prognostic_studies Idioma: En Revista: J Contam Hydrol Asunto de la revista: TOXICOLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Países Bajos