Your browser doesn't support javascript.
loading
The Water Hyacinth Microbiome: Link Between Carbon Turnover and Nutrient Cycling.
Ávila, Marcelo P; Oliveira-Junior, Ernandes S; Reis, Mariana P; Hester, Eric R; Diamantino, Cristiane; Veraart, Annelies J; Lamers, Leon P M; Kosten, Sarian; Nascimento, Andréa M A.
Afiliación
  • Ávila MP; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
  • Oliveira-Junior ES; Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
  • Reis MP; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
  • Hester ER; Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
  • Diamantino C; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
  • Veraart AJ; Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
  • Lamers LPM; Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
  • Kosten S; Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands.
  • Nascimento AMA; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil. amaral@ufmg.br.
Microb Ecol ; 78(3): 575-588, 2019 Oct.
Article en En | MEDLINE | ID: mdl-30706113
Water hyacinth (WH), a large floating plant, plays an important role in the biogeochemistry and ecology of many freshwaters globally. Its biogeochemical impact on wetland functioning is strongly mediated by the microbiome associated with its roots. However, little is known about the structure and function of this WH rhizobiome and its relation to wetland ecosystem functioning. Here, we unveil the core and transient rhizobiomes of WH and their key biogeochemical functions in two of the world's largest wetlands: the Amazon and the Pantanal. WH hosts a highly diverse microbial community shaped by spatiotemporal changes. Proteobacteria lineages were most common, followed by Actinobacteria and Planctomycetes. Deltaproteobacteria and Sphingobacteriia predominated in the core microbiome, potentially associated with polysaccharide degradation and fermentation of plant-derived carbon. Conversely, a plethora of lineages were transient, including highly abundant Acinetobacter, Acidobacteria subgroup 6, and methanotrophs, thus assuring diverse taxonomic signatures in the two different wetlands. Our findings point out that methanogenesis is a key driver of, and proxy for, community structure, especially during seasonal plant decline. We provide ecologically relevant insights into the WH microbiome, which is a key element linking plant-associated carbon turnover with other biogeochemical fluxes in tropical wetlands.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Carbono / Eichhornia / Microbiota Idioma: En Revista: Microb Ecol Año: 2019 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bacterias / Carbono / Eichhornia / Microbiota Idioma: En Revista: Microb Ecol Año: 2019 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Estados Unidos