Pressure Drop of Microchannel Plate Fin Heat Sinks.
Micromachines (Basel)
; 10(2)2019 Jan 24.
Article
en En
| MEDLINE
| ID: mdl-30678359
The entrance region constitutes a considerable fraction of the channel length in miniaturized devices. Laminar slip flow in microchannel plate fin heat sinks under hydrodynamically developing conditions is investigated semi-analytically and numerically in this paper. The semi-analytical model for the pressure drop of microchannel plate fin heat sinks is obtained by solving the momentum equation with the first-order velocity slip boundary conditions at the channel walls. The simple pressure drop model utilizes fundamental solutions from fluid dynamics to predict its constitutive components. The accuracy of the model is examined using computational fluid dynamics (CFD) simulations and the experimental and numerical data available in the literature. The model can be applied to either apparent liquid slip over hydrophobic and superhydrophobic surfaces or gas slip flow in microchannel heat sinks. The developed model has an accuracy of 92 percent for slip flow in microchannel plate fin heat sinks. The developed model may be used to predict the pressure drop of slip flow in microchannel plate fin heat sinks for minimizing the effort and expense of experiments, especially in the design and optimization of microchannel plate fin heat sinks.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Micromachines (Basel)
Año:
2019
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Suiza