Your browser doesn't support javascript.
loading
Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss.
Amthor, Jeffrey S; Bar-Even, Arren; Hanson, Andrew D; Millar, A Harvey; Stitt, Mark; Sweetlove, Lee J; Tyerman, Stephen D.
Afiliación
  • Amthor JS; AIR Worldwide Corporation, Boston, Massachusetts 02116 jamthor@air-worldwide.com bar-even@mpimp-golm.mpg.de adha@ufl.edu harvey.millar@uwa.edu.au mstitt@mpimp-golm.mpg.de lee.sweetlove@plants.ox.ac.uk steve.tyerman@adelaide.edu.au.
  • Bar-Even A; Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany jamthor@air-worldwide.com bar-even@mpimp-golm.mpg.de adha@ufl.edu harvey.millar@uwa.edu.au mstitt@mpimp-golm.mpg.de lee.sweetlove@plants.ox.ac.uk steve.tyerman@adelaide.edu.au.
  • Hanson AD; Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611 jamthor@air-worldwide.com bar-even@mpimp-golm.mpg.de adha@ufl.edu harvey.millar@uwa.edu.au mstitt@mpimp-golm.mpg.de lee.sweetlove@plants.ox.ac.uk steve.tyerman@adelaide.edu.au.
  • Millar AH; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley 6009 WA, Australia jamthor@air-worldwide.com bar-even@mpimp-golm.mpg.de adha@ufl.edu harvey.millar@uwa.edu.au mstitt@mpimp-golm.mpg.de lee.sweetlove@plants.ox.ac.uk steve.tyerman@
  • Stitt M; Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany jamthor@air-worldwide.com bar-even@mpimp-golm.mpg.de adha@ufl.edu harvey.millar@uwa.edu.au mstitt@mpimp-golm.mpg.de lee.sweetlove@plants.ox.ac.uk steve.tyerman@adelaide.edu.au.
  • Sweetlove LJ; Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom jamthor@air-worldwide.com bar-even@mpimp-golm.mpg.de adha@ufl.edu harvey.millar@uwa.edu.au mstitt@mpimp-golm.mpg.de lee.sweetlove@plants.ox.ac.uk steve.tyerman@adelaide.edu.au.
  • Tyerman SD; ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia jamthor@air-worldwide.com bar-even@mpimp-golm.mpg.de adha@ufl.edu harvey.millar@uwa.edu.au mstitt@mpi
Plant Cell ; 31(2): 297-314, 2019 02.
Article en En | MEDLINE | ID: mdl-30670486
Roughly half the carbon that crop plants fix by photosynthesis is subsequently lost by respiration. Nonessential respiratory activity leading to unnecessary CO2 release is unlikely to have been minimized by natural selection or crop breeding, and cutting this large loss could complement and reinforce the currently dominant yield-enhancement strategy of increasing carbon fixation. Until now, however, respiratory carbon losses have generally been overlooked by metabolic engineers and synthetic biologists because specific target genes have been elusive. We argue that recent advances are at last pinpointing individual enzyme and transporter genes that can be engineered to (1) slow unnecessary protein turnover, (2) replace, relocate, or reschedule metabolic activities, (3) suppress futile cycles, and (4) make ion transport more efficient, all of which can reduce respiratory costs. We identify a set of engineering strategies to reduce respiratory carbon loss that are now feasible and model how implementing these strategies singly or in tandem could lead to substantial gains in crop productivity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Carbono / Productos Agrícolas Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fotosíntesis / Carbono / Productos Agrícolas Idioma: En Revista: Plant Cell Asunto de la revista: BOTANICA Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido