Your browser doesn't support javascript.
loading
A Model of [Formula: see text] Dynamics in an Accurate Reconstruction of Parotid Acinar Cells.
Pages, Nathan; Vera-Sigüenza, Elías; Rugis, John; Kirk, Vivien; Yule, David I; Sneyd, James.
Afiliación
  • Pages N; Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland, 1010, New Zealand. npag780@aucklanduni.ac.nz.
  • Vera-Sigüenza E; Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland, 1010, New Zealand.
  • Rugis J; Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland, 1010, New Zealand.
  • Kirk V; Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland, 1010, New Zealand.
  • Yule DI; School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 711, Rochester, NY, USA.
  • Sneyd J; Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland, 1010, New Zealand.
Bull Math Biol ; 81(5): 1394-1426, 2019 05.
Article en En | MEDLINE | ID: mdl-30644065
We have constructed a spatiotemporal model of [Formula: see text] dynamics in parotid acinar cells, based on new data about the distribution of inositol trisphophate receptors (IPR). The model is solved numerically on a mesh reconstructed from images of a cluster of parotid acinar cells. In contrast to our earlier model (Sneyd et al. in J Theor Biol 419:383-393. https://doi.org/10.1016/j.jtbi.2016.04.030 , 2017b), which cannot generate realistic [Formula: see text] oscillations with the new data on IPR distribution, our new model reproduces the [Formula: see text] dynamics observed in parotid acinar cells. This model is then coupled with a fluid secretion model described in detail in a companion paper: A mathematical model of fluid transport in an accurate reconstruction of a parotid acinar cell (Vera-Sigüenza et al. in Bull Math Biol. https://doi.org/10.1007/s11538-018-0534-z , 2018b). Based on the new measurements of IPR distribution, we show that Class I models (where [Formula: see text] oscillations can occur at constant [[Formula: see text]]) can produce [Formula: see text] oscillations in parotid acinar cells, whereas Class II models (where [[Formula: see text]] needs to oscillate in order to produce [Formula: see text] oscillations) are unlikely to do so. In addition, we demonstrate that coupling fluid flow secretion with the [Formula: see text] signalling model changes the dynamics of the [Formula: see text] oscillations significantly, which indicates that [Formula: see text] dynamics and fluid flow cannot be accurately modelled independently. Further, we determine that an active propagation mechanism based on calcium-induced calcium release channels is needed to propagate the [Formula: see text] wave from the apical region to the basal region of the acinar cell.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glándula Parótida / Señalización del Calcio / Células Acinares / Modelos Biológicos Límite: Animals / Humans Idioma: En Revista: Bull Math Biol Año: 2019 Tipo del documento: Article País de afiliación: Nueva Zelanda Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glándula Parótida / Señalización del Calcio / Células Acinares / Modelos Biológicos Límite: Animals / Humans Idioma: En Revista: Bull Math Biol Año: 2019 Tipo del documento: Article País de afiliación: Nueva Zelanda Pais de publicación: Estados Unidos