Contactless Optical Characterization of Carrier Dynamics in Free-Standing InAs-InAlAs Core-Shell Nanowires on Silicon.
Nano Lett
; 19(2): 990-996, 2019 02 13.
Article
en En
| MEDLINE
| ID: mdl-30620205
Contactless time-resolved optical pump-probe and external quantum efficiency measurements were performed in epitaxially grown free-standing wurtzite indium arsenide/indium aluminum arsenide (InAs-InAlAs) core-shell nanowires on Si (111) substrate from 77 to 293 K. The first independent investigation of Shockley-Read-Hall, radiative, and Auger recombination in InAs-based NWs is presented. Although the Shockley-Read-Hall recombination coefficient was found to be at least 2 orders of magnitude larger than the average experimental values of other reported InAs materials, the Auger recombination coefficient was reported to be 10-fold smaller. The very low Auger and high radiative rates result in an estimated peak internal quantum efficiency of the core-shell nanowires as high as 22% at 77â¯K, making these nanowires of potential interest for high-efficiency mid-infrared emitters. A greater than 2-fold enhancement in minority carrier lifetime was observed from capping nanowires with a thin InAlAs shell due to the passivation of surface defects.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2019
Tipo del documento:
Article
Pais de publicación:
Estados Unidos