Your browser doesn't support javascript.
loading
Augmented Reticular Thalamic Bursting and Seizures in Scn1a-Dravet Syndrome.
Ritter-Makinson, Stefanie; Clemente-Perez, Alexandra; Higashikubo, Bryan; Cho, Frances S; Holden, Stephanie S; Bennett, Eric; Chkhaidze, Ana; Eelkman Rooda, Oscar H J; Cornet, Marie-Coralie; Hoebeek, Freek E; Yamakawa, Kazuhiro; Cilio, Maria Roberta; Delord, Bruno; Paz, Jeanne T.
Afiliación
  • Ritter-Makinson S; Gladstone Institute of Neurological Disease, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Clemente-Perez A; Gladstone Institute of Neurological Disease, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Higashikubo B; Gladstone Institute of Neurological Disease, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Cho FS; Gladstone Institute of Neurological Disease, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Holden SS; Gladstone Institute of Neurological Disease, San Francisco, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Bennett E; Gladstone Institute of Neurological Disease, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Chkhaidze A; Gladstone Institute of Neurological Disease, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Eelkman Rooda OHJ; Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands; Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands.
  • Cornet MC; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, Catholic University of Louvain, Louvain, Belgium.
  • Hoebeek FE; Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands; Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands; NIDOD Institute, Wilhelmina Children's Hospital, University Medical Center Utrecht and Brain Center Rudolf Magnus, Utrecht, the Netherlands.
  • Yamakawa K; Laboratory for Neurogenetics, RIKEN Brain Science Institute, Wako, Japan.
  • Cilio MR; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Delord B; Institut des Systèmes Intelligents et de Robotique (ISIR), Sorbonne University, 4 Place Jussieu, 75005 Paris, France.
  • Paz JT; Gladstone Institute of Neurological Disease, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Insti
Cell Rep ; 26(1): 54-64.e6, 2019 01 02.
Article en En | MEDLINE | ID: mdl-30605686
Loss of function in the Scn1a gene leads to a severe epileptic encephalopathy called Dravet syndrome (DS). Reduced excitability in cortical inhibitory neurons is thought to be the major cause of DS seizures. Here, in contrast, we show enhanced excitability in thalamic inhibitory neurons that promotes the non-convulsive seizures that are a prominent yet poorly understood feature of DS. In a mouse model of DS with a loss of function in Scn1a, reticular thalamic cells exhibited abnormally long bursts of firing caused by the downregulation of calcium-activated potassium SK channels. Our study supports a mechanism in which loss of SK activity causes the reticular thalamic neurons to become hyperexcitable and promote non-convulsive seizures in DS. We propose that reduced excitability of inhibitory neurons is not global in DS and that non-GABAergic mechanisms such as SK channels may be important targets for treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Convulsiones / Tálamo / Epilepsias Mioclónicas Límite: Animals / Humans Idioma: En Revista: Cell Rep Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Convulsiones / Tálamo / Epilepsias Mioclónicas Límite: Animals / Humans Idioma: En Revista: Cell Rep Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos