Your browser doesn't support javascript.
loading
High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors.
Masvidal-Codina, Eduard; Illa, Xavi; Dasilva, Miguel; Calia, Andrea Bonaccini; Dragojevic, Tanja; Vidal-Rosas, Ernesto E; Prats-Alfonso, Elisabet; Martínez-Aguilar, Javier; De la Cruz, Jose M; Garcia-Cortadella, Ramon; Godignon, Philippe; Rius, Gemma; Camassa, Alessandra; Del Corro, Elena; Bousquet, Jessica; Hébert, Clement; Durduran, Turgut; Villa, Rosa; Sanchez-Vives, Maria V; Garrido, Jose A; Guimerà-Brunet, Anton.
Afiliación
  • Masvidal-Codina E; Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.
  • Illa X; Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.
  • Dasilva M; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
  • Calia AB; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
  • Dragojevic T; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain.
  • Vidal-Rosas EE; ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
  • Prats-Alfonso E; ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
  • Martínez-Aguilar J; Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.
  • De la Cruz JM; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
  • Garcia-Cortadella R; Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.
  • Godignon P; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
  • Rius G; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain.
  • Camassa A; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain.
  • Del Corro E; Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.
  • Bousquet J; Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain.
  • Hébert C; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
  • Durduran T; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain.
  • Villa R; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain.
  • Sanchez-Vives MV; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain.
  • Garrido JA; ICFO-Institut de Ciéncies Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
  • Guimerà-Brunet A; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
Nat Mater ; 18(3): 280-288, 2019 03.
Article en En | MEDLINE | ID: mdl-30598536
Recording infraslow brain signals (<0.1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transistores Electrónicos / Mapeo Encefálico / Microtecnología / Lóbulo Frontal / Grafito Límite: Animals Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2019 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transistores Electrónicos / Mapeo Encefálico / Microtecnología / Lóbulo Frontal / Grafito Límite: Animals Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2019 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido