Your browser doesn't support javascript.
loading
Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study.
Ohene, Yolanda; Harrison, Ian F; Nahavandi, Payam; Ismail, Ozama; Bird, Eleanor V; Ottersen, Ole P; Nagelhus, Erlend A; Thomas, David L; Lythgoe, Mark F; Wells, Jack A.
Afiliación
  • Ohene Y; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK.
  • Harrison IF; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK.
  • Nahavandi P; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK.
  • Ismail O; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK.
  • Bird EV; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK.
  • Ottersen OP; GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
  • Nagelhus EA; GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
  • Thomas DL; Neuroradiological Academic Unit, UCL Institute of Neurology, UCL, London, UK; Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, UCL, London, UK.
  • Lythgoe MF; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK.
  • Wells JA; UCL Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK. Electronic address: jack.wells@ucl.ac.uk.
Neuroimage ; 188: 515-523, 2019 03.
Article en En | MEDLINE | ID: mdl-30557661
There is currently a lack of non-invasive tools to assess water transport in healthy and pathological brain tissue. Aquaporin-4 (AQP4) water channels are central to many water transport mechanisms, and emerging evidence also suggests that AQP4 plays a key role in amyloid-ß (Aß) clearance, possibly via the glymphatic system. Here, we present the first non-invasive technique sensitive to AQP4 channels polarised at the blood-brain interface (BBI). We apply a multiple echo time (multi-TE) arterial spin labelling (ASL) MRI technique to the mouse brain to assess BBI water permeability via calculation of the exchange time (Texw), the time for magnetically labelled intravascular water to exchange across the BBI. We observed a 31% increase in exchange time in AQP4-deficient (Aqp4-/-) mice (452 ±â€¯90 ms) compared to their wild-type counterparts (343 ±â€¯91 ms) (p = 0.01), demonstrating the sensitivity of the technique to the lack of AQP4 water channels. More established, quantitative MRI parameters: arterial transit time (δa), cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) detected no significant changes with the removal of AQP4. This clinically relevant tool may be crucial to better understand the role of AQP4 in water transport across the BBI, as well as clearance of proteins in neurodegenerative conditions such as Alzheimer's disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transporte Biológico / Agua Corporal / Imagen por Resonancia Magnética / Barrera Hematoencefálica / Acuaporina 4 / Neuroimagen / Sistema Glinfático Límite: Animals Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transporte Biológico / Agua Corporal / Imagen por Resonancia Magnética / Barrera Hematoencefálica / Acuaporina 4 / Neuroimagen / Sistema Glinfático Límite: Animals Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos