Your browser doesn't support javascript.
loading
Using Kinect to classify Parkinson's disease stages related to severity of gait impairment.
Dranca, Lacramioara; de Abetxuko Ruiz de Mendarozketa, Lopez; Goñi, Alfredo; Illarramendi, Arantza; Navalpotro Gomez, Irene; Delgado Alvarado, Manuel; Rodríguez-Oroz, María Cruz.
Afiliación
  • Dranca L; Centro Universitario de la Defensa, ctra. Huesca, Zaragoza, Spain.
  • de Abetxuko Ruiz de Mendarozketa L; University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, Donostia-San Sebastian, 20018, Spain.
  • Goñi A; University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, Donostia-San Sebastian, 20018, Spain. alfredo@ehu.eus.
  • Illarramendi A; University of the Basque Country (UPV/EHU), Paseo Manuel Lardizabal 1, Donostia-San Sebastian, 20018, Spain.
  • Navalpotro Gomez I; Neurodegenerative Disorders Area, Biodonostia Health Research Institute, Begiristain Doktorea Pasealekua, Donostia-San Sebastian, 20014, Spain.
  • Delgado Alvarado M; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain.
  • Rodríguez-Oroz MC; Donostia University Hospital, Donostia-San Sebastian, Spain.
BMC Bioinformatics ; 19(1): 471, 2018 Dec 10.
Article en En | MEDLINE | ID: mdl-30526473
BACKGROUND: Parkinson's Disease (PD) is a chronic neurodegenerative disease associated with motor problems such as gait impairment. Different systems based on 3D cameras, accelerometers or gyroscopes have been used in related works in order to study gait disturbances in PD. Kinect Ⓡ has also been used to build these kinds of systems, but contradictory results have been reported: some works conclude that Kinect does not provide an accurate method of measuring gait kinematics variables, but others, on the contrary, report good accuracy results. METHODS: In this work, we have built a Kinect-based system that can distinguish between different PD stages, and have performed a clinical study with 30 patients suffering from PD belonging to three groups: early PD patients without axial impairment, more evolved PD patients with higher gait impairment but without Freezing of Gait (FoG), and patients with advanced PD and FoG. Those patients were recorded by two Kinect devices when they were walking in a hospital corridor. The datasets obtained from the Kinect were preprocessed, 115 features identified, some methods were applied to select the relevant features (correlation based feature selection, information gain, and consistency subset evaluation), and different classification methods (decision trees, Bayesian networks, neural networks and K-nearest neighbours classifiers) were evaluated with the goal of finding the most accurate method for PD stage classification. RESULTS: The classifier that provided the best results is a particular case of a Bayesian Network classifier (similar to a Naïve Bayesian classifier) built from a set of 7 relevant features selected by the correlation-based on feature selection method. The accuracy obtained for that classifier using 10-fold cross validation is 93.40%. The relevant features are related to left shin angles, left humerus angles, frontal and lateral bents, left forearm angles and the number of steps during spin. CONCLUSIONS: In this paper, it is shown that using Kinect is adequate to build a inexpensive and comfortable system that classifies PD into three different stages related to FoG. Compared to the results of previous works, the obtained accuracy (93.40%) can be considered high. The relevant features for the classifier are: a) movement and position of the left arm, b) trunk position for slightly displaced walking sequences, and c) left shin angle, for straight walking sequences. However, we have obtained a better accuracy (96.23%) for a classifier that only uses features extracted from slightly displaced walking steps and spin walking steps. Finally, the obtained set of relevant features may lead to new rehabilitation therapies for PD patients with gait problems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Programas Informáticos / Marcha Tipo de estudio: Prognostic_studies Límite: Aged / Female / Humans / Male Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Programas Informáticos / Marcha Tipo de estudio: Prognostic_studies Límite: Aged / Female / Humans / Male Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido