Progression of excitation-contraction coupling defects in doxorubicin cardiotoxicity.
J Mol Cell Cardiol
; 126: 129-139, 2019 01.
Article
en En
| MEDLINE
| ID: mdl-30500377
Cardiac failure is a common complication in cancer survivors treated with anthracyclines. Here we followed up cardiac function and excitation-contraction (EC) coupling in an in vivo doxorubicin (Dox) treated mice model (iv, total dose of 10â¯mg/Kg divided once every three days). Cardiac function was evaluated by echocardiography at 2, 6 and 15â¯weeks after the last injection. While normal at 2 and 6â¯weeks, ejection fraction was significantly reduced at 15â¯weeks. In order to evaluate the underlying mechanisms, we measured [Ca2+]i transients by confocal microscopy and action potentials (AP) by patch-clamp technique in cardiomyocytes isolated at these times. Three phases were observed: 1/depression and slowing of the [Ca2+]i transients at 2â¯weeks after treatment, with occurrence of proarrhythmogenic Ca2+ waves, 2/compensatory state at 6â¯weeks, and 3/depression on [Ca2+]i transients and cell contraction at 15â¯weeks, concomitant with in-vivo defects. These [Ca2+]i transient alterations were observed without cellular hypertrophy or AP prolongation and mirrored the sarcoplasmic reticulum (SR) Ca2+ load variations. At the molecular level, this was associated with a decrease in the sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) expression and enhanced RyR2 phosphorylation at the protein kinase A (PKA, pS2808) site (2 and 15â¯weeks). RyR2 phosphorylation at the Ca2+/calmodulin dependent protein kinase II (CaMKII, pS2814) site was enhanced only at 2â¯weeks, coinciding with the higher incidence of proarrhythmogenic Ca2+ waves. Our study highlighted, for the first time, the progression of Dox treatment-induced alterations in Ca2+ handling and identified key components of the underlying Dox cardiotoxicity. These findings should be helpful to understand the early-, intermediate-, and late- cardiotoxicity already recorded in clinic in order to prevent or treat at the subclinical level.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Doxorrubicina
/
Acoplamiento Excitación-Contracción
/
Cardiotoxicidad
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
J Mol Cell Cardiol
Año:
2019
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Reino Unido