Your browser doesn't support javascript.
loading
Design and Application of a High-G Piezoresistive Acceleration Sensor for High-Impact Application.
Hu, Xiaodong; Mackowiak, Piotr; Bäuscher, Manuel; Ehrmann, Oswin; Lang, Klaus-Dieter; Schneider-Ramelow, Martin; Linke, Stefan; Ngo, Ha-Duong.
Afiliación
  • Hu X; Department Electrical Engineering, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany. xiaodonghu2010@gmail.com.
  • Mackowiak P; Wafer Level System Integration, Fraunhofer Institute for Reliability and Microintegration, Gustav-Meyer-Allee 25, 13355 Berlin, Germany. Piotr.Mackowiak@izm.fraunhofer.de.
  • Bäuscher M; Department Electrical Engineering, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany. Manuel.Baeuscher@izm.fraunhofer.de.
  • Ehrmann O; Wafer Level System Integration, Fraunhofer Institute for Reliability and Microintegration, Gustav-Meyer-Allee 25, 13355 Berlin, Germany. Manuel.Baeuscher@izm.fraunhofer.de.
  • Lang KD; Department Electrical Engineering, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany. Oswin.Ehrmann@izm.fraunhofer.de.
  • Schneider-Ramelow M; Wafer Level System Integration, Fraunhofer Institute for Reliability and Microintegration, Gustav-Meyer-Allee 25, 13355 Berlin, Germany. Oswin.Ehrmann@izm.fraunhofer.de.
  • Linke S; Department Electrical Engineering, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany. kdlang@izm.fraunhofer.de.
  • Ngo HD; Wafer Level System Integration, Fraunhofer Institute for Reliability and Microintegration, Gustav-Meyer-Allee 25, 13355 Berlin, Germany. kdlang@izm.fraunhofer.de.
Micromachines (Basel) ; 9(6)2018 May 28.
Article en En | MEDLINE | ID: mdl-30424199
In this paper, we present our work developing a family of silicon-on-insulator (SOI)⁻based high-g micro-electro-mechanical systems (MEMS) piezoresistive sensors for measurement of accelerations up to 60,000 g. This paper presents the design, simulation, and manufacturing stages. The high-acceleration sensor is realized with one double-clamped beam carrying one transversal and one longitudinal piezoresistor on each end of the beam. The four piezoresistors are connected to a Wheatstone bridge. The piezoresistors are defined to 4400 Ω, which results in a width-to-depth geometry of the pn-junction of 14 µm × 1.8 µm. A finite element method (FEM) simulation model is used to determine the beam length, which complies with the resonance frequency and sensitivity. The geometry of the realized high-g sensor element is 3 × 2 × 1 mm³. To demonstrate the performance of the sensor, a shock wave bar is used to test the sensor, and a Polytec vibrometer is used as an acceleration reference. The sensor wave form tracks the laser signal very well up to 60,000 g. The sensor can be utilized in aerospace applications or in the control and detection of impact levels.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Micromachines (Basel) Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Suiza