Photocatalytic oxidation of diuron using nickel organic xerogel under simulated solar irradiation.
Sci Total Environ
; 650(Pt 1): 1207-1215, 2019 Feb 10.
Article
en En
| MEDLINE
| ID: mdl-30308808
In this study, a nickel organic xerogel (X-Ni) was used as semiconductor photocatalyst for the degradation of the herbicide diuron (DRN) in aqueous solution. The main objective of this work was to analyze and compare the effectiveness of solar irradiation to remove DRN from water both by direct photolysis and photocatalytic degradation. We examined the influence of the initial concentration of the herbicide, the solution pH, the presence of different ions in the medium, the chemical composition of the water, and the presence of a photocatalyst, after 240â¯min of irradiation. Direct photolysis achieved a low percentage of DRN degradation but was favored: i) by a reduction in the initial concentration of the herbicide (from 35.6% to 79.0% for 0.150â¯×â¯10-3â¯mol/L and 0.021â¯×â¯10-3â¯mol/L of DRN, respectively) and ii) at solution pHs at which diuron is positively charged (78.6% for pHâ¯2 and 50.4% for pHâ¯7), as suggested by DFT calculations carried out for DRN and its protonated form (DRN-H+). The corresponding mono-demethylated DRN derivative, 1-(3,4-dichlorophenyl)-3-methylurea (DCPU), was identified as a DRN degradation byproduct. In addition, the presence of certain anions in the medium significantly affected the overall degradation process by direct photolysis, due to the additional generation of HO radicals. We highlight that the presence of X-Ni considerably improved the photodegradation process under solar irradiation. The photocatalytic degradation rate constant was directly proportional to the xerogel concentration, because an increase in catalyst dose produced an increase in surface active sites for the photodegradation of DRN, enhancing the overall efficiency of the process. Thus, when 4167â¯mg/g of X-Ni was added, the DRN removal rate was 3-fold higher and both percentage of degradation and mineralization increased 88.5% with respect to the results obtained by direct photolysis.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Sci Total Environ
Año:
2019
Tipo del documento:
Article
Pais de publicación:
Países Bajos