Your browser doesn't support javascript.
loading
OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli.
Hädicke, Oliver; von Kamp, Axel; Aydogan, Timur; Klamt, Steffen.
Afiliación
  • Hädicke O; Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
  • von Kamp A; Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
  • Aydogan T; Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
  • Klamt S; Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
PLoS Comput Biol ; 14(9): e1006492, 2018 09.
Article en En | MEDLINE | ID: mdl-30248096
Constraint-based modeling techniques have become a standard tool for the in silico analysis of metabolic networks. To further improve their accuracy, recent methodological developments focused on integration of thermodynamic information in metabolic models to assess the feasibility of flux distributions by thermodynamic driving forces. Here we present OptMDFpathway, a method that extends the recently proposed framework of Max-min Driving Force (MDF) for thermodynamic pathway analysis. Given a metabolic network model, OptMDFpathway identifies both the optimal MDF for a desired phenotypic behavior as well as the respective pathway itself that supports the optimal driving force. OptMDFpathway is formulated as a mixed-integer linear program and is applicable to genome-scale metabolic networks. As an important theoretical result, we also show that there exists always at least one elementary mode in the network that reaches the maximal MDF. We employed our new approach to systematically identify all substrate-product combinations in Escherichia coli where product synthesis allows for concomitant net CO2 assimilation via thermodynamically feasible pathways. Although biomass synthesis cannot be coupled to net CO2 fixation in E. coli we found that as many as 145 of the 949 cytosolic carbon metabolites contained in the genome-scale model iJO1366 enable net CO2 incorporation along thermodynamically feasible pathways with glycerol as substrate and 34 with glucose. The most promising products in terms of carbon assimilation yield and thermodynamic driving forces are orotate, aspartate and the C4-metabolites of the tricarboxylic acid cycle. We also identified thermodynamic bottlenecks frequently limiting the maximal driving force of the CO2-fixing pathways. Our results indicate that heterotrophic organisms like E. coli hold a possibly underestimated potential for CO2 assimilation which may complement existing biotechnological approaches for capturing CO2. Furthermore, we envision that the developed OptMDFpathway approach can be used for many other applications within the framework of constrained-based modeling and for rational design of metabolic networks.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbono / Dióxido de Carbono / Ciclo del Ácido Cítrico / Escherichia coli / Redes y Vías Metabólicas Tipo de estudio: Diagnostic_studies Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbono / Dióxido de Carbono / Ciclo del Ácido Cítrico / Escherichia coli / Redes y Vías Metabólicas Tipo de estudio: Diagnostic_studies Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos