Your browser doesn't support javascript.
loading
Polar Effects Control the Gas-Phase Reactivity of para-Benzyne Analogs.
Sheng, Huaming; Ma, Xin; Lei, Hao-Ran; Milton, Jacob; Tang, Weijuan; Jin, Chunfen; Gao, Jinshan; Wittrig, Ashley M; Archibold, Enada F; Nash, John J; Kenttämaa, Hilkka I.
Afiliación
  • Sheng H; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Ma X; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Lei HR; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Milton J; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Tang W; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Jin C; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Gao J; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Wittrig AM; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Archibold EF; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Nash JJ; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • Kenttämaa HI; Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
Chemphyschem ; 19(21): 2839-2842, 2018 11 05.
Article en En | MEDLINE | ID: mdl-30203923
We report herein a gas-phase reactivity study on a para-benzyne cation and its three cyano-substituted, isomeric derivatives performed using a dual-linear quadrupole ion trap mass spectrometer. All four biradicals were found to undergo primary and secondary radical reactions analogous to those observed for the related monoradicals, indicating the presence of two reactive radical sites. The reactivity of all biradicals is substantially lower than that of the related monoradicals, as expected based on the singlet ground states of the biradicals. The cyano-substituted biradicals show substantially greater reactivity than the analogous unsubstituted biradical. The greater reactivity is rationalized by the substantially greater (calculated) electron affinity of the radical sites of the cyano-substituted biradicals, which results in stabilization of their transition states through polar effects. This finding is in contrast to the long-standing thinking that the magnitude of the singlet-triplet splitting controls the reactivity of para-benzynes.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chemphyschem Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chemphyschem Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania