Your browser doesn't support javascript.
loading
Enhanced photocatalytic performance of Ag/TiO2 nanohybrid sensitized by black phosphorus nanosheets in visible and near-infrared light.
Wang, Xin; Xiang, Yuren; Zhou, Benqing; Zhang, Youming; Wu, Jiatao; Hu, Rui; Liu, Liwei; Song, Jun; Qu, Junle.
Afiliación
  • Wang X; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Xiang Y; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Zhou B; Biophotonics Research Laboratory, Center of Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, OK 73034, USA.
  • Zhang Y; Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China.
  • Wu J; Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China.
  • Hu R; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Liu L; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
  • Song J; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address: songjun@szu.edu.cn.
  • Qu J; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address: jlqu@szu.edu.cn.
J Colloid Interface Sci ; 534: 1-11, 2019 Jan 15.
Article en En | MEDLINE | ID: mdl-30196196
The efficient utilization of solar energy for environmental cleaning has attracted great attention, where the key is to efficiently harvest the visible and near-infrared (NIR) light which occupies approximately 95% of the solar light energy. Recently, black phosphorus (BP), as a new staring 2D material, has been extensively studied as photocatalytic materials due to its broad light absorption and tunable bandgap. Herein, we report a novel ternary nanocomposite, BP-Ag/TiO2, prepared through controlled deposition of Ag clusters on the surface of TiO2 nanocrystals and then incorporated to BP nanosheets. The BP-Ag/TiO2 nanocomposite has shown excellent photocatalytic activity towards the degradation of methylene blue (MB) under visible and NIR light irradiation. About 100% and even 25% of MB was degraded in 85 min under >420 nm and >780 nm irradiation, respectively. The enhanced photocatalytic activity of BP-Ag/TiO2 nanocomposite was mainly ascribed to the sensitization of BP nanosheets by fully harvest of solar light and high electron-hole separation efficiency. We believe that the BP-Ag/TiO2 nanocomposite will be an effective photofunctional material in full-spectrum solar energy conversion and opens up a new door for the development of solar light driven photocatalysts for the remediation of environmental pollution.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos