Your browser doesn't support javascript.
loading
Parity-Engineered Light-Matter Interaction.
Goetz, J; Deppe, F; Fedorov, K G; Eder, P; Fischer, M; Pogorzalek, S; Xie, E; Marx, A; Gross, R.
Afiliación
  • Goetz J; Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany.
  • Deppe F; Physik-Department, Technische Universität München, 85748 Garching, Germany.
  • Fedorov KG; Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany.
  • Eder P; Physik-Department, Technische Universität München, 85748 Garching, Germany.
  • Fischer M; Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München, Germany.
  • Pogorzalek S; Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany.
  • Xie E; Physik-Department, Technische Universität München, 85748 Garching, Germany.
  • Marx A; Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany.
  • Gross R; Physik-Department, Technische Universität München, 85748 Garching, Germany.
Phys Rev Lett ; 121(6): 060503, 2018 Aug 10.
Article en En | MEDLINE | ID: mdl-30141644
The concept of parity describes the inversion symmetry of a system and is of fundamental relevance in the standard model, quantum information processing, and field theory. In quantum electrodynamics, parity is conserved and large field gradients are required to engineer the parity of the light-matter interaction operator. In this work, we engineer a potassiumlike artificial atom represented by a specifically designed superconducting flux qubit. We control the wave function parity of the artificial atom with an effective orbital momentum provided by a resonator. By irradiating the artificial atom with spatially shaped microwave fields, we select the interaction parity in situ. In this way, we observe dipole and quadrupole selection rules for single state transitions and induce transparency via longitudinal coupling. Our work advances the design of tunable artificial multilevel atoms to a new level, which is particularly promising with respect to quantum chemistry simulations with near-term superconducting circuits.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos