Unusual Pressure-Induced Periodic Lattice Distortion in SnSe_{2}.
Phys Rev Lett
; 121(2): 027003, 2018 Jul 13.
Article
en En
| MEDLINE
| ID: mdl-30085758
We performed high-pressure x-ray diffraction (XRD), Raman, and transport measurements combined with first-principles calculations to investigate the behavior of tin diselenide (SnSe_{2}) under compression. The obtained single-crystal XRD data indicate the formation of a (1/3,1/3,0)-type superlattice above 17 GPa. According to our density functional theory results, the pressure-induced transition to the commensurate periodic lattice distortion (PLD) phase is due to the combined effect of strong Fermi surface nesting and electron-phonon coupling at a momentum wave vector q=(1/3,1/3,0). In contrast, similar PLD transitions associated with charge density wave (CDW) orderings in transition metal dichalcogenides (TMDs) do not involve significant Fermi surface nesting. The discovered pressure-induced PLD is quite remarkable, as pressure usually suppresses CDW phases in related materials. Our findings, therefore, provide new playgrounds to study the intricate mechanisms governing the emergence of PLD in TMD-related materials.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Año:
2018
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos