Theoretical investigation on the interaction between RhIII octaethylporphyrin and a graphite basal surface: a comparison study of DFT, DFT-D, and AFM.
Phys Chem Chem Phys
; 20(30): 20235-20246, 2018 Aug 01.
Article
en En
| MEDLINE
| ID: mdl-30033464
Using density functional theory based calculations and atomic-force-microscopy observations, we investigated the interaction between [RhIII(OEP)(Cl)] (OEP = octaethylporphyrin) and a graphite basal surface, and the electronic structure of [RhIII(OEP)(Cl)]/graphite. The [RhIII(OEP)(Cl)] complex has an electronic structure effective for CO activation, possessing a closed singlet structure as its ground state; hence, both σ-donation from the CO molecule (anode-reaction reactant) to RhIII, and π-back-donation from RhIII to CO, occur, because the [RhIII(OEP)(Cl)] complex does not have a singlet occupied molecular orbital on the porphyrin ring, the π-π stacking interaction between porphyrin and graphite is not present and their interaction is dominated by dispersion forces. The [RhIII(OEP)(Cl)] complex easily diffused on the graphite basal surface, and an aggregated structure of [RhIII(OEP)(Cl)] was observed by atomic force microscopy. The difference of the electronic structures of [RhIII(OEP)(Cl)] before and after its adsorption is very small, the dispersion force being the dominant force for the adsorption. However, the lowest unoccupied molecular orbital of [RhIII(OEP)(Cl)]/graphite is a σ bonding orbital between RhIII and graphite that will cause fast electron transfer from [RhIII(OEP)(Cl)] to graphite during the CO electro-oxidation; this would be a reason why the carbon-supported [RhIII(OEP)(Cl)] has high catalytic activity for CO electro-oxidation.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Chem Chem Phys
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2018
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Reino Unido