Predictor-Based Extended-State-Observer Design for Consensus of MASs With Delays and Disturbances.
IEEE Trans Cybern
; 49(4): 1259-1269, 2019 Apr.
Article
en En
| MEDLINE
| ID: mdl-29994280
In this paper, we study output feedback leader-follower consensus problem for multiagent systems subject to external disturbances and time delays in both input and output. First, we consider the linear case and a novel predictor-based extended state observer is designed for each follower with relative output information of the neighboring agents. Then, leader-follower consensus protocols are proposed which can compensate the delays and disturbances efficiently. In particular, the proposed observer and controller do not contain any integral term of the past control input and hence are easy to implement. Consensus analysis is put in the framework of Lyapunov-Krasovskii functionals and sufficient conditions are derived to guarantee that the consensus errors converge to zero asymptotically. Then, the results are extended to nonlinear multiagent systems with nonlinear disturbances. Finally, the validity of the proposed design is demonstrated through a numerical example of network-connected unmanned aerial vehicles.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
IEEE Trans Cybern
Año:
2019
Tipo del documento:
Article
Pais de publicación:
Estados Unidos