DNA-assisted synthesis of nickel cobalt sulfide nanosheets as high-performance battery-type electrode materials.
J Colloid Interface Sci
; 528: 100-108, 2018 Oct 15.
Article
en En
| MEDLINE
| ID: mdl-29843057
Nickel-cobalt sulfide (NiCo2S4) nanosheets were successfully fabricated by an environment-friendly hydrothermal method with the assistance of DNA molecules. Different morphological samples were prepared by adjusting the concentrations of DNA. The NiCo2S4 nanosheets derived from 0.2⯵g/mL DNA (denoted as DS2) exhibited a desirable mesoporous feature with superior electrochemical performance compared with other samples. As a battery-type electrode material, it exhibited a high specific capacity of 644C g-1 at the current density of 1 A/g, superior rate capability of 74.3% retention at 15 A/g and remarkable cycling stability of 90.5% after 1500 cycles. Thus, the electrode material of NiCo2S4 nanosheets assisted by DNA molecule offered great potential in eco-friendly energy storage device applications.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Año:
2018
Tipo del documento:
Article
Pais de publicación:
Estados Unidos