Your browser doesn't support javascript.
loading
Electrohydrodynamic channeling effects in narrow fractures and pores.
Bolet, Asger; Linga, Gaute; Mathiesen, Joachim.
Afiliación
  • Bolet A; Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2400 Copenhagen, Denmark.
  • Linga G; Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2400 Copenhagen, Denmark.
  • Mathiesen J; Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2400 Copenhagen, Denmark.
Phys Rev E ; 97(4-1): 043114, 2018 Apr.
Article en En | MEDLINE | ID: mdl-29758757
In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5% compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2018 Tipo del documento: Article País de afiliación: Dinamarca Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2018 Tipo del documento: Article País de afiliación: Dinamarca Pais de publicación: Estados Unidos