Sirtuin signaling controls mitochondrial function in glycogen storage disease type Ia.
J Inherit Metab Dis
; 2018 May 08.
Article
en En
| MEDLINE
| ID: mdl-29740774
Glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6Pase-α) is a metabolic disorder characterized by impaired glucose homeostasis and a long-term complication of hepatocellular adenoma/carcinoma (HCA/HCC). Mitochondrial dysfunction has been implicated in GSD-Ia but the underlying mechanism and its contribution to HCA/HCC development remain unclear. We have shown that hepatic G6Pase-α deficiency leads to downregulation of sirtuin 1 (SIRT1) signaling that underlies defective hepatic autophagy in GSD-Ia. SIRT1 is a NAD+-dependent deacetylase that can deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial integrity, biogenesis, and function. We hypothesized that downregulation of hepatic SIRT1 signaling in G6Pase-α-deficient livers impairs PGC-1α activity, leading to mitochondrial dysfunction. Here we show that the G6Pase-α-deficient livers display defective PGC-1α signaling, reduced numbers of functional mitochondria, and impaired oxidative phosphorylation. Overexpression of hepatic SIRT1 restores PGC-1α activity, normalizes the expression of electron transport chain components, and increases mitochondrial complex IV activity. We have previously shown that restoration of hepatic G6Pase-α expression normalized SIRT1 signaling. We now show that restoration of hepatic G6Pase-α expression also restores PGC-1α activity and mitochondrial function. Finally, we show that HCA/HCC lesions found in G6Pase-α-deficient livers contain marked mitochondrial and oxidative DNA damage. Taken together, our study shows that downregulation of hepatic SIRT1/PGC-1α signaling underlies mitochondrial dysfunction and that oxidative DNA damage incurred by damaged mitochondria may contribute to HCA/HCC development in GSD-Ia.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Inherit Metab Dis
Año:
2018
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos