Your browser doesn't support javascript.
loading
Evaluation of a recommender app for apps for the treatment of depression and anxiety: an analysis of longitudinal user engagement.
Cheung, Ken; Ling, Wodan; Karr, Chris J; Weingardt, Kenneth; Schueller, Stephen M; Mohr, David C.
Afiliación
  • Cheung K; Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA.
  • Ling W; Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA.
  • Karr CJ; Audacious software, Chicago, IL, USA.
  • Weingardt K; Center for Behavioral Intervention Technologies (CBITs), Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.
  • Schueller SM; Center for Behavioral Intervention Technologies (CBITs), Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.
  • Mohr DC; Center for Behavioral Intervention Technologies (CBITs), Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.
J Am Med Inform Assoc ; 25(8): 955-962, 2018 08 01.
Article en En | MEDLINE | ID: mdl-29659857
Objective: While depression and anxiety are common mental health issues, only a small segment of the population has access to standard one-on-one treatment. The use of smartphone apps can fill this gap. An app recommender system may help improve user engagement of these apps and eventually symptoms. Methods: IntelliCare was a suite of apps for depression and anxiety, with a Hub app that provided app recommendations aiming to increase user engagement. This study captured the records of 8057 users of 12 apps. We measured overall engagement and app-specific usage longitudinally by the number of weekly app sessions ("loyalty") and the number of days with app usage ("regularity") over 16 weeks. Hub and non-Hub users were compared using zero-inflated Poisson regression for loyalty, linear regression for regularity, and Cox regression for engagement duration. Adjusted analyses were performed in 4561 users for whom we had baseline characteristics. Impact of Hub recommendations was assessed using the same approach. Results: When compared to non-Hub users in adjusted analyses, Hub users had a lower risk of discontinuing IntelliCare (hazard ratio = 0.67, 95% CI, 0.62-0.71), higher loyalty (2- to 5-fold), and higher regularity (0.1-0.4 day/week greater). Among Hub users, Hub recommendations increased app-specific loyalty and regularity in all 12 apps. Discussion/Conclusion: Centralized app recommendations increase overall user engagement of the apps, as well as app-specific usage. Further studies relating app usage to symptoms can validate that such a recommender improves clinical benefits and does so at scale.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trastornos de Ansiedad / Telemedicina / Trastorno Depresivo / Aplicaciones Móviles Tipo de estudio: Diagnostic_studies / Evaluation_studies / Guideline / Risk_factors_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: J Am Med Inform Assoc Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Trastornos de Ansiedad / Telemedicina / Trastorno Depresivo / Aplicaciones Móviles Tipo de estudio: Diagnostic_studies / Evaluation_studies / Guideline / Risk_factors_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: J Am Med Inform Assoc Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido