Your browser doesn't support javascript.
loading
Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma.
Goya-Outi, Jessica; Orlhac, Fanny; Calmon, Raphael; Alentorn, Agusti; Nioche, Christophe; Philippe, Cathy; Puget, Stéphanie; Boddaert, Nathalie; Buvat, Irène; Grill, Jacques; Frouin, Vincent; Frouin, Frederique.
Afiliación
  • Goya-Outi J; IMIV, Inserm, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
Phys Med Biol ; 63(10): 105003, 2018 05 10.
Article en En | MEDLINE | ID: mdl-29633962
Few methodological studies regarding widely used textural indices robustness in MRI have been reported. In this context, this study aims to propose some rules to compute reliable textural indices from multimodal 3D brain MRI. Diagnosis and post-biopsy MR scans including T1, post-contrast T1, T2 and FLAIR images from thirty children with diffuse intrinsic pontine glioma (DIPG) were considered. The hybrid white stripe method was adapted to standardize MR intensities. Sixty textural indices were then computed for each modality in different regions of interest (ROI), including tumor and white matter (WM). Three types of intensity binning were compared [Formula: see text]: constant bin width and relative bounds; [Formula: see text] constant number of bins and relative bounds; [Formula: see text] constant number of bins and absolute bounds. The impact of the volume of the region was also tested within the WM. First, the mean Hellinger distance between patient-based intensity distributions decreased by a factor greater than 10 in WM and greater than 2.5 in gray matter after standardization. Regarding the binning strategy, the ranking of patients was highly correlated for 188/240 features when comparing [Formula: see text] with [Formula: see text], but for only 20 when comparing [Formula: see text] with [Formula: see text], and nine when comparing [Formula: see text] with [Formula: see text]. Furthermore, when using [Formula: see text] or [Formula: see text] texture indices reflected tumor heterogeneity as assessed visually by experts. Last, 41 features presented statistically significant differences between contralateral WM regions when ROI size slightly varies across patients, and none when using ROI of the same size. For regions with similar size, 224 features were significantly different between WM and tumor. Valuable information from texture indices can be biased by methodological choices. Recommendations are to standardize intensities in MR brain volumes, to use intensity binning with constant bin width, and to define regions with the same volumes to get reliable textural indices.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética / Neoplasias del Tronco Encefálico / Imagen Multimodal / Sustancia Blanca / Glioma Tipo de estudio: Guideline / Observational_studies / Prognostic_studies Límite: Adolescent / Child / Child, preschool / Female / Humans / Male Idioma: En Revista: Phys Med Biol Año: 2018 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Imagen por Resonancia Magnética / Neoplasias del Tronco Encefálico / Imagen Multimodal / Sustancia Blanca / Glioma Tipo de estudio: Guideline / Observational_studies / Prognostic_studies Límite: Adolescent / Child / Child, preschool / Female / Humans / Male Idioma: En Revista: Phys Med Biol Año: 2018 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Reino Unido