Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina.
Biomed Opt Express
; 9(2): 486-506, 2018 Feb 01.
Article
en En
| MEDLINE
| ID: mdl-29552388
Complex differential variance (CDV) provides phase-sensitive angiographic imaging for optical coherence tomography (OCT) with immunity to phase-instabilities of the imaging system and small-scale axial bulk motion. However, like all angiographic methods, measurement noise can result in erroneous indications of blood flow that confuse the interpretation of angiographic images. In this paper, a modified CDV algorithm that corrects for this noise-bias is presented. This is achieved by normalizing the CDV signal by analytically derived upper and lower limits. The noise-bias corrected CDV algorithm was implemented into an experimental 1 µm wavelength OCT system for retinal imaging that used an eye tracking scanner laser ophthalmoscope at 815 nm for compensation of lateral eye motions. The noise-bias correction improved the CDV imaging of the blood flow in tissue layers with a low signal-to-noise ratio and suppressed false indications of blood flow outside the tissue. In addition, the CDV signal normalization suppressed noise induced by galvanometer scanning errors and small-scale lateral motion. High quality cross-section and motion-corrected en face angiograms of the retina and choroid are presented.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Biomed Opt Express
Año:
2018
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos