Your browser doesn't support javascript.
loading
Maximum entropy approach to H-theory: Statistical mechanics of hierarchical systems.
Vasconcelos, Giovani L; Salazar, Domingos S P; Macêdo, A M S.
Afiliación
  • Vasconcelos GL; Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco 50670-901 Recife, Pernambuco, Brazil.
  • Salazar DSP; Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE, Brazil.
  • Macêdo AMS; Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade Federal de Pernambuco 50670-901 Recife, Pernambuco, Brazil.
Phys Rev E ; 97(2-1): 022104, 2018 Feb.
Article en En | MEDLINE | ID: mdl-29548225
A formalism, called H-theory, is applied to the problem of statistical equilibrium of a hierarchical complex system with multiple time and length scales. In this approach, the system is formally treated as being composed of a small subsystem-representing the region where the measurements are made-in contact with a set of "nested heat reservoirs" corresponding to the hierarchical structure of the system, where the temperatures of the reservoirs are allowed to fluctuate owing to the complex interactions between degrees of freedom at different scales. The probability distribution function (pdf) of the temperature of the reservoir at a given scale, conditioned on the temperature of the reservoir at the next largest scale in the hierarchy, is determined from a maximum entropy principle subject to appropriate constraints that describe the thermal equilibrium properties of the system. The marginal temperature distribution of the innermost reservoir is obtained by integrating over the conditional distributions of all larger scales, and the resulting pdf is written in analytical form in terms of certain special transcendental functions, known as the Fox H functions. The distribution of states of the small subsystem is then computed by averaging the quasiequilibrium Boltzmann distribution over the temperature of the innermost reservoir. This distribution can also be written in terms of H functions. The general family of distributions reported here recovers, as particular cases, the stationary distributions recently obtained by Macêdo et al. [Phys. Rev. E 95, 032315 (2017)10.1103/PhysRevE.95.032315] from a stochastic dynamical approach to the problem.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2018 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Año: 2018 Tipo del documento: Article País de afiliación: Brasil Pais de publicación: Estados Unidos