Your browser doesn't support javascript.
loading
Compression in Working Memory and Its Relationship With Fluid Intelligence.
Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien.
Afiliación
  • Chekaf M; Bases Corpus Langage UMR 7320 CNRS, Université Côte d'Azur.
  • Gauvrit N; Human and Artificial Cognition Lab, EPHE.
  • Guida A; LP3C, University of Rennes.
  • Mathy F; Bases Corpus Langage UMR 7320 CNRS, Université Côte d'Azur.
Cogn Sci ; 42 Suppl 3: 904-922, 2018 06.
Article en En | MEDLINE | ID: mdl-29524237
Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia / Memoria a Corto Plazo Tipo de estudio: Prognostic_studies Límite: Adult / Humans Idioma: En Revista: Cogn Sci Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia / Memoria a Corto Plazo Tipo de estudio: Prognostic_studies Límite: Adult / Humans Idioma: En Revista: Cogn Sci Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos