Your browser doesn't support javascript.
loading
Biomimetic Rotated Lamellar Plywood Motifs by Additive Manufacturing of Metal Alloy Scaffolds for Bone Tissue Engineering.
Yu, Gary Z; Chou, Da-Tren; Hong, Daeho; Roy, Abhijit; Kumta, Prashant N.
Afiliación
  • Yu GZ; Department of Bioengineering, University of Pittsburgh, 815C Benedum Hall, Pittsburgh, Pennsylvania 15213, United States.
  • Chou DT; Department of Bioengineering, University of Pittsburgh, 815C Benedum Hall, Pittsburgh, Pennsylvania 15213, United States.
  • Hong D; Department of Bioengineering, University of Pittsburgh, 815C Benedum Hall, Pittsburgh, Pennsylvania 15213, United States.
  • Roy A; Swanson School of Engineering and School of Dental Medicine, University of Pittsburgh, 815C Benedum Hall, Pittsburgh, Pennsylvania 15213, United States.
  • Kumta PN; McGowan Institute of Regenerative Medicine, University of Pittsburgh, 815C Benedum Hall, Pittsburgh, Pennsylvania 15213, United States.
ACS Biomater Sci Eng ; 3(4): 648-657, 2017.
Article en En | MEDLINE | ID: mdl-29445771
Additive manufacturing presents opportunities to treat bone defects using biomimetic tissue scaffolds. Past investigations have explored modulating scaffold mechanical properties through varying materials and geometric motifs. Herein, we applied the rotated plywood structure of bone tissue to a 3D printed scaffold with the goal of improving mechanical performance compared to an orthogonal mesh design commonly used in tissue scaffold applications. The scaffolds were subjected to uniaxial compression followed by scanning electron microscopy and microcomputer tomography. The uniaxial compression test was characterized through elastic modulus (mean 1.32 GPa biomimetic, 0.196 GPa orthogonal, p < 0.001), ultimate compressive strength (mean 16.546 MPa biomimetic, 6.309 MPa orthogonal design, p < 0.001), and ultimate compressive strain values (4.867% biomimetic, 9.000% orthogonal, p < 0.005). Correlation of microfracture imaging to bulk scaffold mode of failure suggest that utilizing the biomimetic plywood design not only improved mechanical performance, but also reduced asymmetrtic buckling, plastic deformation, and fracture propagation similar to bone tissue.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Biomater Sci Eng Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Biomater Sci Eng Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos