Your browser doesn't support javascript.
loading
Autogenous hepatic tissue transplantation into the omentum in a novel ectopic liver regeneration murine model.
Macedo, Francisco Igor; Eid, Joseph J; Decker, Milessa; Herschman, Barry; Negussie, Edsa; Mittal, Vijay K.
Afiliación
  • Macedo FI; Department of Surgery, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan. Electronic address: macedofr@msu.edu.
  • Eid JJ; Department of Surgery, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan.
  • Decker M; Department of Surgery, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan.
  • Herschman B; Department of Pathology, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan.
  • Negussie E; Department of Radiology, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan.
  • Mittal VK; Department of Surgery, Providence Hospital and Medical Centers, Michigan State University College of Human Medicine, Southfield, Michigan.
J Surg Res ; 223: 215-223, 2018 03.
Article en En | MEDLINE | ID: mdl-29433876
BACKGROUND: Liver regeneration involves hyperplasia and hypertrophy of hepatic cells. The capacity of macroscopic liver tissue to regenerate in ectopic sites is unknown. We aim to develop a novel in vivo model of ectopic liver survivability and regeneration and assess its functionality. METHODS: Adult male Sprague-Dawley rats (n = 23) were divided into four groups: (1) single-stage (SS) group, wedge liver resection was performed, and the parenchyma was directly implanted into the omentum; (2) double-stage (DS) group, omentum pedicle was transposed over the left hepatic lobe followed by wedge liver resection along with omental flap; (3) Biogel + DS group, rats received intraperitoneal injection of inert polymer particles prior to DS; (4) Biogel + DS + portal vein ligation (PVL) group, Biogel + DS rats underwent subsequent PVL. Hepatobiliary iminodiacetic acid scintigraphy assessed bile excretion from ectopic hepatic implants. RESULTS: Histologically, the scores of necrosis (P < 0.001) and fibrosis (P = 0.004) were significantly improved in rats undergoing DS procedure (groups 2, 3, and 4) compared with the SS group. Biogel rats (Biogel + DS and Biogel + DS + PVL) demonstrated statistically increased scores of bile duct neoformation (P = 0.002) compared to those without the particles (SS and DS). Scintigraphy demonstrated similar uptake of radiotracer by ectopic hepatic implants in groups 2, 3, and 4. CONCLUSIONS: Omental transposition provided adequate microcirculation for proliferation of ectopic hepatic cells after liver resection. Inert polymers enhanced the regeneration by promoting differentiation of new bile ducts. The ectopic hepatic implants showed preserved function on scintigraphy. This model provides insights into the capacity of liver parenchyma to regenerate in ectopic sites and the potential as therapeutic target for cell therapy in end-stage liver disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Epiplón / Hepatocitos / Regeneración Hepática Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Surg Res Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Epiplón / Hepatocitos / Regeneración Hepática Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Surg Res Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos