Your browser doesn't support javascript.
loading
Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics.
Si, Wenjie; Dong, Xunde; Yang, Feifei.
Afiliación
  • Si W; Center for Control and Optimization, School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China. Electronic address: siwenjie2008@163.com.
  • Dong X; Center for Control and Optimization, School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China.
  • Yang F; Center for Control and Optimization, School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China.
Neural Netw ; 99: 123-133, 2018 Mar.
Article en En | MEDLINE | ID: mdl-29414534
This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Dinámicas no Lineales / Incertidumbre Tipo de estudio: Prognostic_studies Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Dinámicas no Lineales / Incertidumbre Tipo de estudio: Prognostic_studies Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos