Your browser doesn't support javascript.
loading
Sensitivity of the dynamics of the general Rosenzweig-MacArthur model to the mathematical form of the functional response: a bifurcation theory approach.
Seo, Gunog; Wolkowicz, Gail S K.
Afiliación
  • Seo G; Department of Mathematics, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA. gseo@colgate.edu.
  • Wolkowicz GSK; Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
J Math Biol ; 76(7): 1873-1906, 2018 06.
Article en En | MEDLINE | ID: mdl-29307085
The equations in the Rosenzweig-MacArthur predator-prey model have been shown to be sensitive to the mathematical form used to model the predator response function even if the forms used have the same basic shape: zero at zero, monotone increasing, concave down, and saturating. Here, we revisit this model to help explain this sensitivity in the case of three response functions of Holling type II form: Monod, Ivlev, and Hyperbolic tangent. We consider both the local and global dynamics and determine the possible bifurcations with respect to variation of the carrying capacity of the prey, a measure of the enrichment of the environment. We give an analytic expression that determines the criticality of the Hopf bifurcation, and prove that although all three forms can give rise to supercritical Hopf bifurcations, only the Trigonometric form can also give rise to subcritical Hopf bifurcation and has a saddle node bifurcation of periodic orbits giving rise to two coexisting limit cycles, providing a counterexample to a conjecture of Kooji and Zegeling. We also revisit the ranking of the functional responses, according to their potential to destabilize the dynamics of the model and show that given data, not only the choice of the functional form, but the choice of the number and/or position of the data points can influence the dynamics predicted.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Predatoria / Cadena Alimentaria / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: J Math Biol Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Predatoria / Cadena Alimentaria / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals Idioma: En Revista: J Math Biol Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania