Your browser doesn't support javascript.
loading
Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy.
Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B.
Afiliación
  • Alherz A; Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States.
  • Lim CH; Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States.
  • Hynes JT; Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States.
  • Musgrave CB; Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States.
J Phys Chem B ; 122(3): 1278-1288, 2018 01 25.
Article en En | MEDLINE | ID: mdl-29251933
We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG⧧ for hydride transfers from hydride donors to CO2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG⧧; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos